Glycolysis and ATP Synthesis MCQ Practice (Bio Chemistry)
Glycolysis and ATP Synthesis MCQ Practice (Bio Chemistry)
Glycolysis is the metabolic pathway that converts glucose C6H12O6, into pyruvate, CH3COCOO− (pyruvic acid), and a hydrogen ion, H+. The free energy released in this process is used to form the high-energy molecules ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide). Glycolysis is a sequence of ten enzyme-catalyzed reactions. Most monosaccharides, such as fructose and galactose, can be converted to one of these intermediates. The intermediates may also be directly useful rather than just utilized as steps in the overall reaction. For example, the intermediate dihydroxyacetone phosphate (DHAP) is a source of the glycerol that combines with fatty acids to form fat
Glycolysis is an oxygen-independent metabolic pathway. The wide occurrence of glycolysis indicates that it is an ancient metabolic pathway. Indeed, the reactions that constitute glycolysis and its parallel pathway, the pentose phosphate pathway, occur metal-catalyzed under the oxygen-free conditions of the Archean oceans, also in the absence of enzymes
Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, e.g. muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP so that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.
From the perspective of biochemistry, ATP is classified as a nucleoside triphosphate, which indicates that it consists of three components: a nitrogenous base (adenine), the sugar ribose, and the triphosphate
Fatty acid metabolism consists of catabolic processes that generate energy, and anabolic processes that create biologically important molecules (triglycerides, phospholipids, second messengers, local hormones and ketone bodies). Fatty acids are a family of molecules classified within the lipid macronutrient class. One role of fatty acids in animal metabolism is energy production, captured in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle. Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In addition, fatty acids are important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the plasma membrane and other membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus). Fatty acids can also be cleaved, or partially cleaved, from their chemical attachments in the cell membrane to form second messengers within the cell, and local hormones in the immediate vicinity of the cell. The prostaglandins made from arachidonic acid stored in the cell membrane, are probably the most well known group of these local hormones
These questions will give you basic idea for Examination Preparation and/or interview on Glycolysis, ATP Synthesis and Fatty Acid Oxidation.
Please Note:
These questions are only for practice and understanding level of knowledge only. It is not necessary that these questions may or may not appear for examinations and/or interview questions
In this practice test, because of large amount of questions (around 34 questions) some of questions may have repeated
I had to put as 70% pass rate because there may also be wrong answers from my side
Examination Preparation and Interview questions on Glycolysis and ATP Synthesis MCQ Practice (Bio Chemistry)
Url: View Details
What you will learn
- Glycolysis
- ATP Synthesis and Fatty Acid Oxidation
Rating: 2
Level: All Levels
Duration: 34 questions
Instructor: Manu Mitra
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of coursescompany.com.
View Sitemap